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Abstract 

Object-oriented design (OOD) and programming (OOP) offer many advantages for developing modular crop 
models. The model structure is well-defined, reuse of code is facilitated through inheritance, and data can be hidden 
(encapsulated) inside objects that correspond to physical components of the real system, e.g. roots, stems, leaves, or 
soil layers. However, OOD is best suited to describing the relationship between freely interacting objects, and it has 
so far been used almost exclusively for modeling simple, discrete and sequential actions. Plant models are not like the 
automatic teller machine software that is often used in examples of OOD. Plant organs, i.e. objects on the plant, do 
not wait passively for input from other organs, but they all grow in response to their environment and interact with 
each other simultaneously and continuously. Also, our ignorance of the processes controlling plant growth forces us 
to use devices like the limiting factor model to handle these interactions. Many plant models therefore calculate 
potential growth, limitations imposed by various factors, and then actual growth. In short, there are procedural 
elements in plant models that do not easily fit an OOD. However, some OOP languages like C +  + allow mixed 
designs to be implemented, so we have developed a mixed, but mostly object-oriented structure that (1) contains the 
components familiar in extant procedural designs; (2) can be used for modeling at several levels of complexity; and 
(3) can be used to model any plant. The mixed procedural/object-oriented design has been implemented in C +  + as 
a shell using dummy algorithms, and its operation verified. The problems and advantages are discussed. © 1997 
Elsevier Science B.V. All rights reserved 
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1. Introduction 

Compute r  science is a rapidly developing field 
and new programming  languages come so fast 
that  it is difficult to keep up with them. It is 
impor tant  that  plant modellers do not miss signifi- 
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cant advances, but  their problem is knowing 
which advances are significant. For  instance, 
many  computer  languages have been touted as 
replacements for For t ran,  but  most  plant and soil 
modeling is still being done in that  venerable 
language. 

The latest challenge is f rom object-oriented pro- 
gramming (OOP) and the new languages for im- 
plementing object-oriented designs (OOD).  
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Fortran was developed to implement procedural 
or process-oriented designs, where 'objects' such 
as leaves, roots, stems, etc., exist only as state 
variables and the code mimics the processes oper- 
ating on those variables. OOP languages empha- 
size the real or imagined objects in a system, their 
states and the actions they are able to perform. 
The advocates of  OOD claim that it has impor- 
tant advantages over process-oriented designs for 
developing modular crop models. To test the ve- 
racity of  these claims, we developed a general 
object-oriented structure for crop models. This 
paper describes the structure of  the model and 
some of the problems we encountered. Using 
C +  + ,  we developed a mixed procedural/object- 
oriented design that: (1) contains components fa- 
miliar in extant procedural designs; (2) can be 
used for modeling at several levels of  complexity; 
and (3) can be used to model any plant. 

2. Object-oriented design 

2.1. The advantages of OOD 

In traditional procedural designs, a plant com- 
puter model is a collection of state variables (e.g. 
leaf nitrogen content, root dry weight, etc.) that 
describe the state of  a plant system, plus al- 
gorithms that define how various processes 
change these state variables over time (e.g. nitro- 
gen fixation, carbohydrate allocation, photosyn- 
thesis, etc.). The rates of  the processes changing 
these state variables depend on the input or driv- 
ing data (e.g. solar radiation, soil temperature, 
etc.) and the state of the system. The main practi- 
cal problem with this design is how these state 
variables are managed. Either they are available 
to all the algorithms, e.g. in a Fortran COMMON 
block, or they are passed to each module, e.g. as 
arguments in a CALL statement. In the first 
instance, the state variables can be altered in any 
part of  the program, there is no control over 
where changes take place, and it is frequently 
difficult to find all locations where the state vari- 
ables are changed. In the second instance, a subset 
of  the attributes is sent as a string, and the order 
of  variable names in the sending and receiving 

arguments must match exactly. There are many 
opportunities for error. 

Another problem with procedural approaches is 
that processes have no inherent structure to guide 
the design of  the model. Algorithms are often 
grouped into modules describing related processes 
but each programmer's idea of the relationships 
differs from that of other programmers. Thus, 
ideas from one model must usually be repro- 
grammed from the original mathematical equa- 
tions before they can be tested in another model, 
and merging models is a major task. Reuse of 
code is minimal. 

In an object-oriented design, a plant model is a 
set of objects that each know their own state and 
how to change that state in response to com- 
mands called messages (Acock and Reynolds, 
1997). The data describing the state of  an object 
are known as attributes or variables, and the 
algorithms that change that state are known as 
services or methods. Attributes and methods are 
grouped together within each object. Objects can 
send messages to each other to initiate methods 
(Meyer, 1988; Wegner, 1990). 

The physical objects in the real-world system 
impose a fairly obvious structure on the model. 
Even without advance agreement, there is a good 
chance that objects from various plant models will 
be similar and thus could be swapped and/or 
merged. Also, the data associated with an object 
are hidden within that object and are only avail- 
able to the rest of  the model if they are specifically 
made available. Thus an object-oriented model 
gives the programmer better control of  data 
(Booch, 1991). Linking the data with the al- 
gorithms that act on them creates modules that 
are more independent of each other than would 
otherwise be possible. Finally, in OOD the objects 
can be arranged in an inheritance structure such 
that objects with the same or similar processes can 
inherit code from each other. All these attributes 
lead to maximum reuse of  code(Cox, 1986; Wol- 
czko, 1987; Meyer, 1988; Wegner, 1990). 

2.2. Plant models and A TM machines 

Despite these advantages, there are difficulties 
with using an object-oriented design for plant 
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models. Plants do not consist of independent 
objects waiting to respond to input. Fruits, leaves, 
stems and roots are all in constant 
communication via the transfer of materials and 
hormones essential for tissue synthesis. They are 
also all responding independently to their 
environment and are all constantly growing. 
Thus, plants are quite unlike the automatic teller 
machines (ATM), which are often cited as 
excellent examples of the OOD concept. 

An ATM machine is inactive until it receives 
input from a customer. Depending on the input to 
the Keyboard object, the ATM will activate other 
objects to dispense cash, print a statement, etc. 
Some objects will not be activated in a given 
transaction. In the plant/soil/atmosphere system 
in plant models, all the objects are in ceaseless 
activity. The plant modeler is already used to 
representing these simultaneous continuous 
processes on a single processor that performs 
discrete calculations in sequence. With OOD the 
modeler is also faced with mapping these 
processes on to objects that may freely interact in 
any sequence. Most of the literature on OOD 
concentrates on modeling discrete sequential 
processes like the ATM. and the problem of 
modeling continuous parallel processes is rarely 
discussed. 

The level of activity in a given object typically 
depends on the activities of  several other objects. 
For example the rate of extension of  the Stem 
object will depend on temperature from the 
Weather object, water uptake from the Root 
object, and carbon fixation by the Leaf_canopy 
object. (In this paper, an initial capital letter is 
used to denote objects, and an underscore links 
separate words in the name.) Because the 
interactions between objects are complex, there is 
no obvious sequence of action being passed from 
one object to another. Should the Leaf instruct 
the Root to grow or vice versa? The obvious 
answer is to have an object called Timer or 
Sequencer or Simulation_controller to instruct 
all the plant objects to grow in turn. This 
immediately imposes a procedural component 
on our OOD. Our Simulation_controller looks 
very much like the main program in a procedural 
code. 

There is another fundamental difference be- 
tween plants and ATMs. With ATMs we under- 
stand completely the processes that occur, 
whereas with plants our knowledge is incom- 
plete. An ATM program is a complete physical 
description of what happens in an ATM but a 
plant model is, by definition and necessity, an 
approximation of a biological system. One sim- 
plification commonly used to deal with interac- 
tions in plant models is the Law of Limiting 
Factors (Blackman, 1905). This assumes that, 
when several factors are required for a process, 
the factor that is most limiting will determine the 
rate of the process (Acock et al., 1985). For 
example, growth depends on temperature and on 
supplies of carbon, water and nutrients. Many 
plant models calculate a potential growth rate 
for the plant using the factor considered most 
limiting and assuming that no other factors are 
limiting. This potential growth rate is then decre- 
mented or limitcd in some way for each of the 
other relevant factors to determine actual growth 
rate (Joyce and Kickert, 1987). To use this sim- 
plification, we must calculate potential growth 
rates, decrements or limitations and then actual 
growth rate. Again, we have introduced a pro- 
cedural component into our OOD. 

With these procedural elements in plant 
models, the purist tells us that we do not have an 
OOD and asks why we even try to use OOD. Our 
answer is that OOD appears to have sufficient 
advantages to make its use worthwhile despite the 
imperfections of our mixed design. Also, others 
have found it necessary to introduce procedural 
elements into OOD, but they have called them 
control objects (Jacobson et al., 1992) or 
mediators and chains of  responsibility (Gamma et 
al., 1995). We are not convinced that these really 
solve the problem. 

Implementing our mixed procedural/object-ori- 
ented design would be difficult in a purely ob- 
ject-oriented language like Smalltalk80 but C + + 
enables us to mix paradigms easily. The 
danger, of course, is that we will continue to 
write procedural code and miss some of the ad- 
vantages of OOD. 
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2.3. Accommodating various levels o f  detail 

Plant models can be built at various levels of 
detail, depending on their purpose. The simplest 
models consist of a single equation describing 
plant biomass as a function of time. Other models 
describe subcellular processes. Whereas the sim- 
plest model only requires a Plant object, other 
models will subdivide the Plant into Leaves, 
Roots, etc., and some will further subdivide 
Leaves into Mesophyll_cells, Xylem_vessels, and 
so forth. The most detailed model will not need a 
Plant object because the Plant will be the aggre- 
gate of all the other objects. However, there is an 
argument for including a Plant object. 

If we start our model with a simple Plant 
object, we can subsequently subdivide the Plant 
object and pass on any information needed by the 
Leaf and Root objects. If we start with Leaves 
and Roots but no Plant, we cannot subsequently 
replace our complex Plant with a simple one that 
does not recognize the individual organs of plants. 
Our design has no point of attachment for a 
simple Plant object. 

It is reasonable to ask why we would ever want 
to replace a detailed plant model with a simple 
one. Perhaps we want to use our basic design to 
model plants for which the quality of input data 
does not warrant the detail, or we want to exam- 
ine species interactions in an ecosystem and need 
to reduce model run time. In other words, reuse 
of code is facilitated by developing an OOD that 
includes objects corresponding to higher levels of 
aggregation than that at which the model is writ- 
ten. 

2.4. Processes as objects 

The objects in an OOD include both attributes 
and algorithms to compute changes in attributes. 
Thus photosynthesis is a process that is performed 
by the Leaf canopy object and is included in that 
object. Is there ever a case for making processes 
into separate objects? Computer scientists have 
recognized instances where some processes should 
be implemented as objects (Halbert and O'Brien, 
1987; Johnson and Foote, 1988). In plant models, 
there are compelling reasons for treating photo- 

synthesis and similar processes as separate ob- 
jects. Photosynthesis has been studied in great 
detail and there are many models of the process. 
Hence, making this process a separate object facil- 
itates testing and comparing the various alterna- 
tive models (see examples in Chen and Reynolds, 
1997 and Lemmon and Chuk, 1997). 

2.5. Inheritance structure and control structure 

In our mixed procedural/object-oriented design, 
there are two structures that must be considered: 
inheritance and control. In an inheritance struc- 
ture the objects are arranged in a branched hier- 
archy such that objects at a low level are examples 
of the object immediately above them (Appendix 
A). This is sometimes called a 'kind-of' hierarchy 
(i.e. Mainstem is a kind of Stem, Stem is a kind of 
Shoot organ, Appendix A). The inheritance 
structure is developed to allow several objects to 
use the same algorithms (Cox, 1986; Booch, 
1991). For instance, if the same algorithm can be 
used to describe growth in Stem and Petiole, it 
can be placed in Shoot_organ and inherited from 
there by Stem and Petiole, and by all objects 
lower in the hierarchy. This may be the only 
reason for having a Shoot organ object. In our 
experience, inheritance should be used with great 
care. It is unwise to develop inheritance structures 
more than about two layers deep, because debug- 
ging the code becomes very difficult. For example, 
if some algorithm that is used in Mainstem is 
inherited from System entity via P l a n t p a r t ,  
Shoot_organ and Stem, then its origin must be 
traced through each of these layers. The level of 
frustration rises with each step it takes to discover 
the algorithm. Lorenz (1993) recommended using 
no more than 6 levels of inheritance because of 
this problem, and the disadvantages of inheritance 
are discussed at length by Taenzer et al. (1989). 

Attributes can also be inherited from superior 
objects in the hierarchy. Since the names will be 
the same in each object that inherits them, this 
facility should be reserved for variables that are 
used exclusively inside the objects. For instance, 
all objects below Shoot_organ in the hierarchy 
inherit the attribute dry_weight. If we obtain dry 
weights of several objects by sending them the 
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message.give_dryweight ,  we will have to rename 
each dry weight to something more specific to 
avoid confusion. 

In our control structure, the objects and mes- 
sages sent to them are arranged in a call order 
dictated by the procedural components of  the 
design (Appendix B). A pure OOD would not 
need a control structure. The calls are further 
arranged in a branched hierarchy such that phe- 
nomena are considered in greater detail as we 
descend the hierarchy (Chandy and Misra, 1988; 
Lamport,  1984). Thus, as shown in Appendix B, 
the simplest model possible would consist of only 
the first two levels of the hierarchy. The plant 
would be represented by the single object Plant, 
and in response to the message.grow, it would 
update its state. A model at the next level of detail 
would have Plant internally implement 
method.develop, method.potential growth, etc. 

The model does not have to be equally devel- 
oped in all the branches of the control structure. 
It is possible to have great detail for photosynthe- 
sis but treat water stress superficially. This may be 
desired in a model of a greenhouse crop where the 
crop is adequately watered but the use of carbon 
dioxide enrichment necessitates a detailed treat- 
ment of photosynthesis. 

The control structure is also developed to man- 
age data flow. Information about objects low in 
the hierarchy is passed through the objects above 
them. Thus, information about photosynthetic 
rate is passed to Plant through Crop_canopy.  
This method of handling data is not absolutely 
necessary. The Plant could go directly to Photo- 
synthesis for the same information. However, in 
order to accommodate various levels of detail, as 
discussed above, it is desirable to consider data 
handling in the control structure. 

Both the inheritance structure and the control 
structure need to be developed at the start of an 
OOD in order to determine objects that should be 
included in the model. 

3. A proposed O O D  for crop models 

Our proposed OOD for crop plant models is 
defined by the inheritance structure in Appendix 

A, the control structure in Appendix B, and the 
listing of  objects, their attributes and methods in 
Appendix C. It is based on an inheritance struc- 
ture developed collaboratively by a group of  Agri- 
cultural Research Service and university scientists 
who have worked together on a cotton model for 
several years. 

Some of  the objects in the inheritance structure 
do not appear in the control structure, e.g. 
Aer ia lenvi ronment  and Shoot_organ.  This is be- 
cause they are used to pass on attributes and 
methods to inferior objects but do not themselves 
participate in the storage of attributes or calcula- 
tions involved in updating attributes. No part of 
the hierarchy is more than two layers deep and 
using the inheritance structure with the list of 
objects, their attributes and methods, it is fairly 
simple to locate the code of algorithms inherited 
from superior objects. 

Near the bottom of the control structure are 
several messages that carry arguments. The for- 
mat is: Ob jec t_name .message toob j ec t :  argu- 
ment one:argument two. Since this model 
concentrates on the plant, the Soil_environment 
has been left as a single, undivided object in the 
control structure. We have had some vigorous 
debates over whether this object can be usefully 
subdivided. At first we thought that the matrix 
algebra used to move materials about a two-di- 
mensional soil profile dictated using a procedural 
design within the one large object. More recently 
we have considered making individual nodes and 
elements in the soil profile into separate objects. 

The list of objects, their attributes, and methods 
is undoubtedly incomplete. In preparing it, our 
chief concern was to list attributes of  objects that 
would be needed by other objects to perform their 
methods. There will be many more attributes 
needed internally in each object, but these can be 
left to the discretion of individual programmers. 
Indeed our aim has been to construct a design 
that leaves maximum freedom in implementation 
but would ensure compatibility between objects 
written by different programmers. 

The mathematical equations used in algorithms 
look much the same in any computer language. 
The differences lie mainly in the commands that 
are available. Rather than having all plant model- 
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ers learn an object-oriented language, we can 
implement the proposed design as a shell us- 
ing dummy algorithms to ensure that the ob- 
jects interact as intended. Then modelers can 
replace these dummy algorithms with algorithms 
of their own choosing. In this way, most mode- 
lers need only learn how to write equations in 
the new language. They will not be concerned 
with how the objects interact, only that cer- 
tain objects obtain attributes from other ob- 
jects. 

The proposed design has been implemented as a 
shell in C+ + and the source code is available 
from the authors. 
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4. Conclusions 

Object-oriented design (OOD) and program- 
ming (OOP) have thus far been used almost 
exclusively for modeling interactions between ob- 
jects, where the actions are discrete and sequen- 
tial. Interactions between objects in the plant, 
soil and atmosphere are complex, continuous 
and parallel. It is almost impossible to use a 
pure OOD to model plants; procedural ele- 
ments have to be introduced. Putting the proce- 
dural elements into control objects does not 
fundamentally alter the fact that the model de- 
sign is mixed. However, some OOP languages 
like C + +  allow mixed designs to be imple- 
mented. A mixed, but mostly object-oriented 
structure has been developed that (1) contains the 
components familiar in extant procedural designs, 
(2) can be used for modeling at several levels of 
complexity and (3) can be used to model any 
plant. 

The mixed procedural/object-oriented design 
has been implemented in C+ + as a shell using 
dummy algorithms, and its operation verified. The 
advantages claimed for OOD are therefore avail- 
able to plant modelers through the use of a mixed 
design. By having a computer scientist develop a 
shell of the model, it is possible for plant modelers 
to work on the algorithms in each object without 
learning the more complex aspects of the OOP 
language. 

Appendix A 

Proposed inheritance structure for object-ori- 
ented plant models. The only fertilizer element 
shown is N; other elements would be handled 
similarly 

Simulation_controller 
Time 
Aerial_environment 

Two _ meter_ environment 
Canopy_ environment 

Crop_canopy 
Plant 
Shoot_organ 

Stem 
Mainstem 
Branch_ stem 

Leaf blade 
Mainstem_ leaf_ blade 
Branch_ leaf_ blade 

Petiole 
Internode 
Fruiting_point 

Root_profile 
Soil _environment 
Plant_process 

Development 
Photosynthesis 
Photorespiration 
Maintenance_ respiration 
Potential_ transpiration 
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N_acquisition 
N_ partitioning 
C_ partitioning 

Management_action 

Appendix B 

Proposed control structure for object-oriented 
plant models 

Simulation control ler . run 
Time.step 
if a new day: Two_meter_environment.inter- 
polate 
Canopy__ environment, update 
Plant.grow 

Plant.develop 
Development. update 

Plant.potential _growth 
Mainstem.potential_growth 
Branch_ stem. potential _ growth 
Mainstem_ leaf_blade.potential_growth 
Branch_ leaf blade.potential_growth 
Petiole.potential _growth 
lnternode.potential_growth 
Fruiting _ point.potential __ growth 
Root_ profile, potential _ growth 

Plant.water_limitations 
Crop canopy.transpire 

Potential_. transpiration.calculate 
Plant.water_ stress 

Plant.N-limitations 
Plant.acquire_N 

N _ acquisition.calculate 
Plant.partition_ N 

N_partitioning.calculate 
Plant.N_stress 

Plant.C_ limitations 
Plant.acquire_C 

Crop _canopy.photosynthesize 
Photosynthesis.calculate 

Crop_ canopy.photorespire 
Photorespiration.calculate 

Crop _ canopy .maintenance _ respire 
Maintenance_ respiration .calculate 

Plant.partition C 

C_ partitioning.calculate 
Plant.C_ stress 

Plant.actual _growth 
M ainstem.aet ual._ growth 
Branch_ stem.actual_ growth 
M ainstem _ leaf_ blade, actual _ growth 
Branch_ leaf_ blade, actual _ growth 
Petiole. actual _ growth 
Internode.actual_growth 
Fruiting_ point.actual_ growth 
Root_ profile.actual_ growth 

Plant.abscission 
M ainstem _ leaf_ blade, abscission 
Branch_. leaf_blade.abscission 
Petiole.abscission 
Fruiting_ point.abscission 
Root __profile.abscission 

Management.act__ if_ time 
Crop_canopy.set  canopy  chemical :  

a_chemical to:an _amount 
Soil_ environment, set_ chemical: 

a_chemical at:node to:an_amount 
Soil_environment.set_irrigation at:node 

to:an_amount 
Soil _ environment .set _ bulk _ density 

at:node t o : a n a m o u n t  
Soil_ environment.update 

Appendix C 

Objects, their attributes and services for pro- 
posed object-oriented plant models. The values of 
most attributes can be obtained with the mes- 
sage.give (name of attribute) 

Simulation _controller 
attributes or variables: 
day_ to_ start_ run 
day_to_s top_run 
step_ size 

services or methods: 
.run starts the simulator 

Time 
attributes or variables: 
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date 
day_ of_ year 
hour 

services or methods: 
• step-move time forward one timestep 
.date _from d a y  of year 
• day_ of_ year _ from_ date 

Aerial_ environment 
attributes or variables: 
latitude 
daylength 
dawn 
dusk 
CO2 

services or methods: 

Two_meter_environment 
attributes or variables: 
atmospheric_ transmission _coefficient 
cloud_cover_factor 
for each day: 
solar_ radiation_ integral 
air temperature_max 
air_ temperature_ min 
rain_ total 
wind _run 
w a t e r  v a p o r  pressure 
for each time step of the day: 
solar altitude 
solar_azimuth 
cloud _cover 
diffuse/total_ radiation 
solar_ radiation 
air_ temperature 
rain 
wind 
vpd 

services or methods: 
.interpolate-use daily values to calculate values 
for each timestep 

Canopy_ environment 
attributes or variables: 
canopy_ temperature 

rain_intercepted 
ra in_onsoi l  

services or methods: 
.update-calculate canopy environment at current 
time 
.give_avg temp_from: s ta r t t ime to: end_time 

Crop_canopy 
attributes or variables: 
potential_ transpiration _ rate 
actual_transpiration_rate 
canopy albedo 
leaf_ transmission_ coefficient 
canopy_CO2_conductance 
canopy_extinction_coefficient 
canopy_light_utilization_efficiency 
photosynthesis rate 
photorespiration_ rate 
maintenance_ respiration _ rate 
plant_ population _ density 
leaf area index 
leaf/canopy_area 
light_interception 
canopy_water  potential 
canopy_osmotic_potential 
canopy_chemical 
canopy chemical_amount 

services or methods: 
•transpire 
•photosynthesize 
.photorespire 
• maintenance respire 
.set_canopy_chemical:a_chemical to:an_amount 

Plant 
attributes or variables: 
cultivar 
age 
development_ stage 
potential_growth_in_dry_weight 
l e a f  water_potential 
leaf_ osmotic_ potential 
leaf_turgor_pressure 
N d e m a n d  
C d e m a n d  
Nsupp ly  
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C_supply 
N_supply/demand 
C_supply/demand 
shoot_growing time 
N_pool 
C_pool 

services or methods: 
• grow-grow plant for one timestep 
•develop 
•potential_growth 
• water_ limitations 
.water_stress 
.N_limitations 
• acquire_ N 
.partition_N 
•N_stress 
.C_limitations 
.acquire_C 
•partition_C 
.C_stress 
.actual_growth 
.abscision 

Shoot_organ 
attributes or variables: 
on_stem_number 
location on stem 
dry_weight 
proportion_ present 
N_content 
initiation _day 
abscission_day 
age 
development_ stage 
growing 
C_demand 
N_demand 
C_supply/demand 
Nsupply/demand 

services or methods: 

Stem 
attributes or variables: 
length 
number_leaves_on_stem 

services or methods: 

Mainstem 
attributes or variables: 
number _of...branches 

services or methods: 
•potential_growth 
•actual_growth 
•abscission 

Branch_stem 
attributes or variables: 

services or methods: 
•potential_growth 
• actual _growth 
.abscission 

Leaf_blade 
attributes or variables: 
area 
thickness 
water_potential 

services or methods: 

Mainstem_leaf_hlade 
attributes or variables: 

services or methods: 
.potential _growth 
• actual_ growth 
•abscission 

Branch_leaf_blade 
attributes or variables: 

services or methods: 
• potential _growth 
.actual growth 
.abscission 

Petiole 
attributes or variables: 
length 

services or methods: 
•potential_growth 
.actual_growth 
•abscission 
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lnternode 
attributes or variables: 
length 

services or methods: 
•potential_growth 
.actual_growth 
•abscission 

Fruiting_point 
attributes or variables: 
stage_ of_ development 
fruit_dry_weight 
potential_seed_dry_weight 
actual_seed_dry_weight 

services or methods: 
•potential_growth 
.actual_growth 
•abscission 

Root_profile 
attributes or variables: 
for each node in the soil profile: 
young_root_length 
old _ root_ length 
young_ root _dry_weight 
o ld_root_dry_weight  
root _ water_ uptake 
root_N03_uptake  
roo t_P_uptake  
root_ K _ uptake 

hydraulic_conductivity 
soil _ water_ content 
soil _ water_ potential 
soil _ osmotic_ potential 
soil_ temperature 
soil_N 
soil_N03 
soi l_NH4 
soil_P 
soil_K 
soil _CI 
soil_pH 
soil_O2 
soil_CEC 
soil_ organic_matter 
for upper boundary nodes: 
runoff 
soil_ water_evaporation 
for lower boundary nodes: 
deep_drainage 

services or methods: 
.update-calculate soil environment at current time 
.set chemical:a_chemical at:node to:an_amount  
.set_irrigation at:node t o : a n a m o u n t  
.set_bulk_density at:node to:an_amount  

Plant_process 
attributes or variables: 

services or methods: 

services or methods: 
• water _ uptake 
.N03_ uptake 
.potential_growth 
.actual_growth 
.abseision 

Soft _environment 
attributes or variables: 
for each node in the soil profile: 
sand 
silt 
clay 
bulk_density 
total _ pore_ space 

Development 
attributes or variables: 
development_ stage 
change_in_development_stage 

services or methods: 
.update 

Photosynthesis 
attributes or variables: 
photosynthesis_ rate 

services or methods: 
.calculate 
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Photorespiration 
attributes or variables: 
photorespiration_ rate 

services or methods: 
.calculate 

Maintenance_respiration 
attributes or variables: 
maintenance_respiration_rate 

services or methods: 
.calculate 

Potential_Transpiration 
attributes or variables: 
potential _transpiration _ rate 

services or methods: 
.calculate 

N_acquisition 
attributes or variables: 
N_supply 

services or methods: 
.calculate 

N_partitioning 
attributes or variables: 
for each shoot organ: 
N_supply/demand 

services or methods: 
.calculate 

C_partitioning 
attributes or variables: 
for each shoot organ: 
C_ supply/demand 

services or methods: 
.calculate 

Management 
attributes or variables: 
row_orientation 
row_ pattern 

row_spacing 
sowing_day 
sowing_depth 
seeddensi ty 
emergenceday 
emerged_plant_density 
target_maturity_day 
day of action 
type_of_action 
irrigation_location 
irrigation _rate 
irrigation _duration 
irrigation_chemical_type 
irrigation chemical_conc 
chemical_applied 
chemical_application_location 
chemical_application_amount 
tillage_location 
t i l lagedepth 

services or methods: 
.act if time-check to see if a management action 
takes place at this time 
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